Q1, (Jan 2006, Q5)

(i)(a)	$\begin{aligned} & (5 / 5)^{4} x^{2 / 5} \\ & =0.0518(3 \mathrm{sfs}) \text { or } 162 / 3125 \text { oee } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}\right.$	Allow index 3 or 5
(b)	$\begin{aligned} & (3 / 5)^{4} \\ & 1-(3 / 5)^{4} \\ & =0.870(3 \mathrm{sfs}) \text { or }{ }^{544} / 625 \text { oe } \end{aligned}$	M1 M1 A1 3	$\begin{gathered} 2 / 5+5 / 5 \mathrm{x}^{2} / 5+(3 / 5)^{2} \mathrm{x}^{2} / 5+(5 / 5)^{3} \mathrm{x}^{2} / 5 \text { M } 2 \\ (\text { lextra or omit or wrong: M1) } \\ \text { Allow } 1-(3 / 5)^{3} \text { or } 1-(3 / 5)^{5} \end{gathered}$
(ii)(a)	$\begin{aligned} & \mathrm{B}\left(5,{ }^{2} / 5\right) \text { stated } \\ & \left.5 \mathrm{x}^{2} / 5 \times \mathrm{x}^{3 / 5}\right)^{4} \text { or } 0.3370-0.0778 \\ & =0.259(3 \mathrm{sfs}) \text { or }{ }^{162 / 625} \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \end{array}$	or $\left({ }^{5} \mathrm{C}_{a}\right.$ or $\left.{ }^{5} \mathrm{C}_{b}\right) \mathrm{x}(2 / 5)^{a} \mathrm{x}\left({ }^{3} / 5\right)^{b} \& a+b=5$
(b)	$\begin{aligned} & " 0.259 " x^{2} / 5 \\ & =0.104(3 \mathrm{sfs}) \text { or } 324 / 3125 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { Alf } & \mathbf{2} \end{array}$	eg ft: (a) $0.0518 \rightarrow 0.0207$ (a) $0.922 \rightarrow 0.369$
Total		10	

Q2, (Jan 2007, Q6)

i	$\begin{aligned} & \mathrm{Geo}(2 / 3) \text { stated } \\ & (1 / 3)^{3} \mathrm{x}^{2 / 3} \\ & =2 / 81 \text { or } 0.0247(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	or implied by $(1 / 3)^{n} \mathrm{x}^{2 / 3}$ -
ii	$\begin{aligned} & (1 / 3)^{3} \\ & 1-(1 / 3)^{3} \\ & 26 / 27 \text { or } 0.963(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } \\ \text { A1 } & 3 \end{array}$	or $2 / 3+1 / 3 x^{2} / 3+(1 / 3)^{2} x^{2} / 3: M 2$ one term omitted or extra or wrong: M1 $1-(1 / 3)^{4}$ or $1-\left(2 / 3+1 / 3 \mathrm{x}^{2} / 3+(1 / 3)^{2} \mathrm{x}^{2} / 3\right)$:M1
iii	$\left[\begin{array}{l} 1 / 2 / 3 \\ =3 / 2 \end{array}\right.$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
Total		8	

Q3, (Jan 2008, Q2)

i	$\begin{aligned} & (4 / 5)^{3} \times(1 / 5) \text { oe } \\ & =64 / 625 \text { or } 0.102(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{\|l\|l} \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	Allow M1 for ($4 / 5)^{4} \mathrm{x}(1 / 5)$
ii	$(4 / 5)^{4}$ alone $\begin{aligned} & \text { or } 1-\left(1 / 5+4 / 5 x^{1 / 5}+(4 / 5)^{2} \times 1 / 5+(4 / 5)^{3} x^{1 / 5}\right) \\ & =256 / 625 \text { or } 0.410(3 \mathrm{sfs}) \end{aligned}$	M1 A1 2	Allow $(4 / 5)^{3}$ or $(4 / 5)^{5} ;$ not $1-(4 / 5)^{4}$ Allow one term omitted or wrong or "correct" extra Allow 0.41
iii	5	B1 1	
Total		5	

(i)(a)	$\begin{aligned} & \text { Geo stated } \\ & (7 / 8)^{2}(1 / 8) \\ & 49 / 512 \text { or } 0.0957(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	or impl. by $(7 / 8)^{n}(1 / 8)$ or $(1 / 8)^{n}(7 / 8)$ alone
(b)	$(1 / 8)^{3}$ alone $343 / 512$ or $0.670(3 \mathrm{sfs}) \quad$ allow 0.67	M2 $\text { A1 } 3$	or $1-\left(1 / 8+7 / 8 \times 1 / 8+(1 / 8)^{2} \times 1 / 8\right):$ one term incorrect, omit or extra: $1-(7 / 8)^{3}$ or $(7 / 8)^{2}$ alone:
(ii)	8	B1 1	
(iii)	Binomial stated or implied $\begin{aligned} & { }^{15} \mathrm{C}_{2}(7 / 8)^{13}(1 / 8)^{2} \\ & =0.289(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	eg by $(1 / 8)^{a}(1 / 8)^{6}(a+b=15, a, b \neq 1)$, not just ${ }^{n} \mathrm{C}_{r}$
		10	

Q5, (Jun 2009, Q4)

i	Geo stated $0.7^{3} \times 0.3$ alone ${ }^{1029} / 10000$ or $0.103(3 \mathrm{sf})$	M1 M1 A1 3	or implied by $q^{n} \times p$ alone $(n>1)$ $0.7^{3}-0.7^{4}$
ii	$\begin{aligned} & 0.7^{4} \text { alone } \\ & ={ }^{2401} / 10000 \text { or } 0.240(3 \mathrm{sf}) \end{aligned}$	Mï A1 2	$1-\left(0.3+0.7 \times 0.3+0.7^{2} \times 0.3+0.7^{3} \times 0.3\right)$ NB $1-0.7^{4}$: M0
iii	$1-0.7^{5}$ $=0.832(3 \mathrm{sfs})$	M2 A1 3	or $0.3+0.7 \times 0.3++\ldots .+0.7^{4} \times 0.3 \mathrm{M} 2$ M1 for one term extra or omitted or wrong or for $1-$ (above) M1 for $1-0.7^{6}$ or 0.7^{5} NB Beware: $1-0.7^{6}=0.882$
		8	

ALevelMathsRevision.com

Q6, (Jan 2011, Q2)

Q i	$\begin{aligned} & 0.8^{2} \times 0.2 \\ & =\frac{16}{125} \text { or } 0.128 \\ & \hline \end{aligned}$	M1 ${ }^{\text {M1 }} 2$		
ii	$\begin{aligned} & 0.8^{2} \times 0.2+0.8^{3} \times 0.2+0.8^{4} \times 0.2 \\ & =\frac{976}{3125} \text { or } 0.312(3 \mathrm{sfs}) \end{aligned}$	M2 A1 3	1 term omitted or wrong or extra: M1	Using $\mathrm{P}(X \leq 5) \& \mathrm{P}(X \leq 2)$; three methods: $1-0.8^{5}-\left(1-0.8^{2}\right) \text { or } 0.672-0.36: \text { M2 }$ Allow M1 for $1-0.8^{5}-\left(1-0.8^{3}\right)$ or $0.672-0.488$ or $1-0.8^{4}-\left(1-0.8^{2}\right)$ or $0.5904-0.36$ $0.8^{2}-0.8^{5}:$ M2 Allow M1 for $0.8^{3}-0.8^{5}$ or $0.8^{2}-0.8^{4}$ $0.2+0.8 \times 0.2+0.8^{2} \times 0.2+0.8^{3} \times 0.2+0.8^{4} \times 0.2-(0.2+0.8 \times 0.2)$: M2 One term omitted or wrong or extra: But NB If include $0.8^{-1} \times 0.2$ in both $\mathrm{P}(X \leq 5) \& \mathrm{P}(X \leq 2)$, get correct ans but M1M0A0 M0 for eg $1-0.8^{5}-0.8^{2}$ or $0.672-0.64$
iii	$=\frac{256}{625}$ or 0.4096 or $0.410(3 \mathrm{sfs})$	M2 A1 \cdots	$1-\left(0.2+0.8 \times 0.2+0.8^{2} \times 0.2+0.8^{3} \times 0.2\right)$ 1 term omitted or wrong or extra: M1 $1-0.8^{4}$ or $0.590 \quad$ M1 or 0.8^{3} or 0.512 or 0.8^{5} or 0.328 : M1 Allow 0.41	$1-\left(0.2+0.8 \times 0.2+0.8^{2} \times 0.2+0.8^{3} \times 0.2\right) \mathrm{M} 2$ $0.2 \times 0.8^{4} \text { M0 } \quad 1-0.8^{n}(n \neq 4) \text { M0 }$
iv	$\begin{aligned} & 0.2 \times 0.8 \times 0.2 \\ & \times 2 \end{aligned}$	M1 M1 $\text { A1 } 3$	or $0.2 \times 0.8^{0} \times 0.8 \times 0.2$ or $0.2 \times 0.8 \times 0.2+0.8 \times 0.2 \times 0.2$	
Total		11		

Q	25/216 oe or $0.116(3 \mathrm{sfs})$	B1 1		
11	$\begin{aligned} & (5 / 6)^{7} \times 1 / 6 \text { alone } \\ & =0.0465(3 \mathrm{sfs}) \text { or } \frac{78125}{167616} \end{aligned}$	M2 A1 3	M1 for $(5 / 6)^{8} \times 1 / 6$ alone	
iii	$\begin{aligned} & (5 / 6)^{8} \text { oe alone } \\ & =0.233(3 \mathrm{sfs}) \text { or } \frac{390625}{1679616} \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \mathrm{~A} 1 & 2 \end{array}$	$1-\mathrm{P}(X \leq 8)$, with exactly 8 correct terms	NOT $1-\left(\frac{5}{6}\right)^{8}, \quad \operatorname{NOT}\left(\frac{5}{6}\right)^{8} \times \ldots$.
1V	NB If more than 5 products are added (eg $\begin{aligned} & (5 / 6)^{9} \times 1 / 6+(5 / 6)^{10} \times 1 / 6+(5 / 6)^{11} \times 1 / 6+(5 / 6)^{12} \times x^{1 / 6} \\ & (=0.0323+0.0268+0.0224+0.0187) \end{aligned}$ $=0.100(3 \mathrm{sfs})$	$\leq X \leq 12$ M3 A1 4	: no marks M3 for all correct or M2 for 3 of these added or these 4 plus 1 extra or 0.0817 or 0.0680 or 0.139 or 0.116 or M1 for ≥ 1 of these terms or values seen; ignore incorrect Allow 0.1 with wking	$\begin{array}{ll} (5 / 6)^{9}-(5 / 6)^{13} \quad \text { or } 1-(5 / 6)^{13}-\left[1-(5 / 6)^{9}\right] & \text { M3 } \\ \text { or }(5 / 6)^{8,9 \text { or } 10}-(5 / 6)^{12,13 \text { or } 14} & \\ \text { or } 1-(5 / 6)^{12,13 \text { or } 14}-\left[\left(1-(5 / 6)^{8,9 \text { or } 10}\right]\right. & \text { M2 } \\ \text { or } \pm\left[(5 / 6)^{9}-\left(1-(5 / 6)^{13}\right)\right] \text { or } \pm\left[1-(5 / 6)^{9}-(5 / 6)^{13}\right] & \text { M1 } \end{array}$
Total		10		

ALevelMathsRevision.com

Q8, (Jun 2012, Q9)

(i)	(a)	Geo stated or implied $0.9^{5} \times 0.1$ alone $=0.059(0 \ldots)(2 \mathrm{sfs})$	M1 M1 A1 [3]	eg by $0.9^{p} \times 0.1$ or $0.1^{p} \times 0.9$ alone, $p>1$ all correct	
(i)	(b)	$\begin{aligned} & 0.9^{5} \text { or } 0.59 \ldots \quad(\mathrm{NB} \text { cf ans to }(\mathrm{i})(\mathrm{a})!!) \\ & \left.1-0.9^{5}\right) \\ & =0.4095 \text { or } 0.410(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 [3]	$\begin{aligned} & 0.1+0.9 \times 0.1+\ldots 0.9^{4} \times 0.1: \text { M2 } \\ & 1 \text { term wrong or omit or extra } \\ & \quad \text { or } 1-(\text { all terms correct }): \quad \text { M1 } \\ & \text { or } 1-0.9^{6}: \end{aligned}$	M0M0A0 for $0.9^{p} \times 0.1$
(ii)	(a)	$\begin{aligned} & 0.05+0.95^{2} \times 0.05 \\ & =\frac{761}{8000} \text { or } 0.0951(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	All correct	$\begin{aligned} \mathrm{NB}!!2 \times 0.95 \times 0.05= & 0.095 \\ & \text { M0A0 } \end{aligned}$
(ii)	(b)	$0.05,0.95^{2} \times 0.05, \ldots \quad$ or $\frac{1}{20}, \frac{361}{8000}, \ldots$ oe $\begin{aligned} & \frac{0.05}{1-0.95^{2}} \text { or } \frac{0.05}{1-0.9025} \text { oe } \\ & =\frac{20}{39} \text { or } 0.513(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 [3]	≥ 2 terms. Not nec'y added May be implied by next line or $\frac{0.05}{1-(1-0.5)^{2}}$ or $\frac{0.05}{2 \times 0.05-0.05^{2}}$ or $\frac{1}{1.95}$ oe	or $r=0.95^{2}$ stated or implied $\mathrm{NB} \frac{0.05}{1-0.5 \times 0.05}=0.0513 \mathrm{M} 0 \mathrm{~A} 0$

ALevelMathsRevision.com

Q9, (Jan 2013, Q8)					
(i)	(a)	$\begin{aligned} & 0.9^{4} \times 0.1 \\ & =\frac{6561}{100000} \text { or } 0.0656(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$		
(i)	(b)	$\begin{aligned} & 0.9^{5} \\ & =\frac{59049}{100000} \text { or } 0.59(2 \mathrm{sf}) \end{aligned}$	M1 Al [2]	Allow 0.9^{4} or $1-0.9^{5}$:M1 but $1-0.9^{n}(n \neq 5)$ or $0.1 \times 0.9^{n}: \mathrm{M} 0$	$\begin{aligned} & 1-\left(0.1+0.9 \times 0.1+0.9^{2} \times 0.1+\right. \\ & \left.\ldots .0 .9^{4} \times 0.1\right) \end{aligned}$ Allow without " 1 -" OR omit last term $\text { NB } 0.9^{5} \times 0.1=0.0590 \mathrm{M} 0 \mathrm{~A} 0$
(i)	(c)	$\begin{array}{ll} \hline 0.1 \times 0.1 \text { or }[0.1 \times 0.1 \times 0.9+0.1 \times 0.1 \times 0.1] & \text { oe } \\ +0.1 \times 0.9 \times 0.1 & \text { oe } \\ +0.9 \times 0.1 \times 0.1 & \text { oe } \\ =0.028 & \end{array}$	M1 M1 M1 A1 [4]	M1M1 two correct terms, no incorrect multiples M1 all correct Ans 0.027 probably M0M1M1A0 but check working SC if no M-mks scored: SSF, SSS, FSS, SFS or SS, FSS, SFS seen or implied: B1	$3 \times 0.1^{2} \times 0.9+0.1^{3}$ no incorrect multiples M2 for 1st term; M1 for 2nd This method only scores using " 1 -": $0.9^{3} ; 3 \times 0.9^{2} \times 0.1$ no incorrect multiples M1; M1 1 - one or both terms with no further wking: M1 (dep M1) eg $1-0.9^{3}$ alone M1M0M1
(ii)	(a)	$\begin{aligned} & 0.9 \times 0.8 \times 0.1 \\ & =\frac{9}{125} \text { or } 0.072 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	alone or allow $\times 0.8$ (ie girls in wrong order) $(=0.0576)$	NOT $0.9 \times 0.8 \times 0.1 \times 0.2=0.0144:$ M0A0 NOT $0.9 \times 0.8 \times 0.2=0.144: \quad$ M0A0
(ii)	(b)	$\begin{aligned} & 0.9^{9 \text { or } 10} \times 0.8^{9 \text { or } 10} \times 0.1(\text { or } \times 0.2, \text { not } \\ & \times 0.1 \times 0.2) \\ & (0.9 \times 0.8)^{9} \times 0.1 \quad \text { oe } \\ & =5.2 \times 10^{-3} \text { or } 0.0052(2 \mathrm{sf}) \end{aligned}$	M1 M1 Al [3]	$\text { allow } 0.9^{9 \text { or } 10} \times 0.8^{9 \text { or } 10} \times 0.1 \times \times^{18,19,20} \mathrm{C}_{1}$ fully correct SC Consistent use of 0.8 for both girls: (ii)(a) or 0.9 for both girls: (ii)(a) seen, allow (a) 0 (b) B1	If ans $=0.00360$ or 0.0150 see SC below 128 (ii)(b) 0.00360 081 (ii)(b) 0.0150 If both these ans

ALevelMathsRevision.com

Q11, (Jun 2014, Q9)

(i)	$\begin{aligned} & 0.7^{4} \times 0.3 \text { alone } \\ & =0.0720(3 \mathrm{sf}) \text { or } \frac{7203}{100000} \text { oe } \end{aligned}$	M1 A1 [2]	allow 0.072	
(ii)	$\left(0.7+0.7^{2}+0.7^{3}\right) \times 0.3$ $=0.4599 \text { or } 0.460(3 \mathrm{sf}) \text { or } \frac{4599}{10000} \text { oe }$	M2 A1 [3]	M1 for 1 term omitted, wrong or extra. must add terms, not mult. Allow 0.46	$\left(1-0.7^{4}\right)-0.3$ or $0.7599-0.3$ $\left(1-0.7^{4}\right)-\ldots$ or $1-0.3-\ldots$ $0.7599-\ldots$ or $0.7-\ldots$ M1
(iii)	$1-0.7^{6}$ $=0.882(3 \mathrm{sf})$	M2 A1 [3]	$\begin{array}{r} \text { M1 for } 0.7^{6} \text { alone or } 1-0.7^{5}(=0.832) \\ \text { or } 1-0.7^{7}(=0.918) \end{array}$	$0.3\left(1+0.7+0.7^{2}+0.7^{3}+0.7^{4}+0.7^{5}\right)$ M2 or (ii) $+0.3\left(1+0.7^{4}+0.7^{5}\right)$ or (i) $)+\left(\right.$ ii) $+0.3\left(1+0.7^{5}\right)$ M2 one term omitted or extra: must add terms, not mult.NB ans 0.832 might be M1M0A0 from omitting last term. Could be, eg, their (ii) $+0.3\left(1+0.7^{4}\right)$ correct working, but subtr from 1: M1
(iv)	$\begin{aligned} & (1-" 0.882 ")^{2} \times " 0.882 " \text { oe } \\ & =0.0122(3 \mathrm{sf}) \end{aligned}$	M1 Alft [2]	$\begin{aligned} & \text { or }\left(0.7^{6}\right)^{2} \times\left(1-0.7^{6}\right) \text { or } 0.1176^{2} \times(1-0.1176) \\ & \text { or }\left(0.7^{6}\right)^{2} \times \text { their "0.882" } \\ & \text { or } 0.3\left(0.7^{12}+\left(0.7^{13}+0.7^{14}+\ldots+0.7^{17}\right)\right) \\ & \text { allow } 0.0123 \end{aligned}$	Not $0.7^{2} \times 0.3$ Completely correct method ft their " 0.882 " except if 0.3 or 0.7

ALevelMathsRevision.com

Q12, (Jun 2015, Q5)

i		Const prob of scoring oe Each shot indep	\| B1 B1 [2]	In context Not 'Prob of goal is consistent' In context Ignore incorrect comments	Prob score on one shot not affected by other shots Each shot indep of previous shot Allow Goals are independent Allow Prob of goals are independent Not Number of goals indep
ii	a	$\begin{aligned} & 0.8^{2} \times 0.2 \\ & =0.128 \text { or } \frac{16}{125} \text { oe } \end{aligned}$	M1 A1 [2]		
ii	b	$\begin{aligned} & 1-0.8^{9} \\ & =0.866(3 \mathrm{sf}) \quad(0.865782 \ldots) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$		Long method: all 9 terms correct: M1
ii	C	$\begin{aligned} & 0.8^{9}-0.8^{19} \quad \text { or } 1-0.8^{19}-\left(1-0.8^{9}\right) \\ & \text { or } 1-{ }^{19.866 '-0.8^{99}} \text { or } 1-0.8^{19}-0.866^{\prime} \\ & =0.120(3 \mathrm{sf}) \end{aligned}$	M2 A1 [3]	Allow M1 for $0.8^{8,9 \text { or } 10}-0.8^{18,19 \text { or } 20}$ or $1-0.8^{18,19 \text { or } 20}-\left(1-0.8^{8,9 \text { or } 10}\right)$ Allow 0.12	Long method: all 10 terms correct: M2 1 term extra, omitted or incorrect: M1

7(iii)(a) \& (iii)(b): SC If 0.2 and 0.3 interchanged, or If 0.3 replaced by $\frac{1}{3}$, consistently throughout (iii)(a) and (iii)(b), all three M-marks can be awarded if consistent working seen OR 'correct' answer with no working. Answers: $0.2 \leftrightarrow 0.3$: (iii)(a) 0.09 (iii)(b) 0.0364

Use of $\frac{1}{3}:$ (iii)(a) 0.04 (iii)(b) $\frac{8}{75}$ or 0.107

	iii	a	$\begin{aligned} & 0.2 \times 0.3 \times 0.2+0.2 \times 0.7 \times 0.2 \text { alone } \\ & =0.04 \text { or } \frac{1}{25} \text { oe } \end{aligned}$	M1 A1 [2]	or 0.2×0.2	
	iii	b	$\begin{aligned} & 0.2 \times 0.3 \times 0.8 \times 0.3+0.8 \times 0.3 \times 0.2 \times 0.3 \\ & \quad+0.8 \times 0.3 \times 0.8 \times 0.3 \text { alone oe } \\ & \text { or } 0.3 \times 0.8 \times 0.3+0.8 \times 0.3 \times 0.2 \times 0.3 \\ & =0.0864 \text { or } \frac{54}{625} \text { oe } \end{aligned}$	M2 A1 [3]	or $\left(0.2 \times 0.8 \times 2+0.8^{2}\right) \times 0.3^{2}$ oe or $\frac{9}{625}+\frac{9}{625}+\frac{36}{625}$ oe \quad M2 or any two correct prods of 4 probs oe :M1 If on tree, must be identified $0.3 \times 0.8 \times 0.3$ M0 unless part of a correct method	$\begin{aligned} & \left(1-0.2^{2}\right) \times 0.3^{2} \text { or }(1-0.04) \times 0.3^{2} \text { oe M2 } \\ & \text { or } 1-0.2^{2} \text { or } 1-0.04 \quad \mathrm{M} 1 \end{aligned}$
Total				14		

